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Topological Dirac semimetals (DSMs) present a kind of topologically nontrivial quantum state of matter, which has
massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In superconducting DSMs, the
effects of their nontrivial topology on superconducting pairing could realize topological superconductivity in the bulk or
on the surface. As superconducting pairing takes place at the Fermi level EF, to make the effects possible, the Dirac points
should lie in the vicinity of EF so that the topological electronic states can participate in the superconducting paring. Here,
we show using angle-resolved photoelectron spectroscopy that in a series of (Ir1−xPtx)Te2 compounds, the type-II Dirac
points reside around EF in the superconducting region, in which the bulk superconductivity has a maximum Tc of ∼ 3 K.
The realization of the coexistence of bulk superconductivity and low-energy Dirac fermions in (Ir1−xPtx)Te2 paves the way
for studying the effects of the nontrivial topology in DSMs on the superconducting state.

Keywords: type-II Dirac semimetal, superconductor, topological superconducting, angle-resolved photoemis-
sion spectroscopy (ARPES), substitution
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The interplay between topological states and super-
conductivity is an important issue in condensed matter
physics.[1,2] One consequence of the interplay is the genera-
tion of Majorana fermions at the boundary of a topological
superconductor, which can be used for topological quantum
computation. Tremendous efforts have been made to induce
superconductivity in topological materials through various ap-
proaches, such as introducing carriers, applying external pres-
sure, and proximity effect, or to search for superconductors
with nontrivial topological electronic states. Superconductiv-
ity has been observed in doped topological insulators, such
as Cu-intercalated Bi2Se3,[3] Bi2Te3 under pressure,[4] Bi2Se3

thin films on superconducting NbSe2 substrate,[5] and In-
doped SnTe.[6] Several superconductors such as RPtBi (R: rare
earth elements),[7–10] Bi2Pd,[11] and FeTe0.55Se0.45

[12,13] have
been revealed to have a nontrivial topology similar to that of

topological insulators.
In addition to superconducting topological insulators, the-

ory has proposed that in superconducting Dirac and Weyl
semimetals, topological superconductivity can also be re-
alized for the bulk or the surface due to their nontrivial
topology.[14–16] Experimentally, the superconductivity was in-
duced by point contact[17,18] or under high pressure[19] in the
Dirac semimetal (DSM) Cd3As2. The point contact spec-
tra of Cd3As2 show a zero-bias conductance peak, suggest-
ing unconventional superconductivity around the point con-
tact region.[17,18] Recent studies have reported that several
transition metal dichalcogenide (TMD) compounds PtTe2,[20]

PdTe2,[21,22] and PtSe2
[23] with the CdI2-type 1T structure

host type-II Dirac points in their electronic structures. As il-
lustrated in Figs. 1(c) and 1(d), distinct from type-I DSMs like
Na3Bi[24,25] and Cd3As2,[26,27] type-II DSMs possess over-
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tilted Dirac cones so that the two Dirac bands have the same
sign in their slope along one direction, in analogy to the type-
II Weyl semimetals.[28–30] As the type-II Dirac points in these
TMD compounds reside far below EF, the Dirac fermions
should have little contribution to the low-energy quasiparticle
excitations at EF. Very recently, Fei et al. reported that the en-
ergy position of the type-II Dirac points in Ir1−xPtxTe2 can be
easily tuned by element substitution.[31] The Dirac points ar-
rive at EF at x ∼ 0.3, where a bulk superconductivity emerges
with Tc = 0.15 K.

In this work, by combining angle-resolved photoemis-
sion spectroscopy (ARPES), energy-dispersive x-ray spec-
troscopy (EDX), x-ray diffraction (XRD), and transport mea-
surements, we systematically investigated the evolution of
electronic structures and superconductivity of (Ir1−xPtx)Te2

with different doping levels. We found that the type-II Dirac
points lie around EF in the superconducting region, in which
the bulk superconductivity has a maximum Tc of ∼ 3 K, which
is accessible in many experimental techniques, making it pos-
sible to study the physical properties of Dirac fermions in the
superconducting state.

High quality (Ir1−xPtx)Te2 single crystals were synthe-
sized by Te flux method. The chemical compositions of the
single crystals for each doping level were analyzed by EDX in
a Hitachi S-4800 at an accelerating voltage of 15 keV. Longi-
tudinal resistivity was measured in an Oxford He-3. High res-
olution ARPES measurements were performed at the “Dream-
line” beamline of the Shanghai Synchrotron Radiation Facil-
ity, the I05 beamline of the Diamond Light Source, and the
13U beamline of the National Synchrotron Radiation Labo-
ratory at Hefei, with the energy and angular resolutions set
at 15 meV and 0.2◦, respectively. All the samples were

cleaved in situ in vacuum condition better than 5×10−11 Torr
and measured between 15–20 K. The first-principles calcu-
lations were performed to calculate the electronic structure
of the 1T-structure IrTe2 with the projector augmented wave
(PAW) method as implemented in VASP package.[32] The
tight-binding Hamiltonians of semi-infinite samples are con-
structed by the maximally localized Wannier functions (ML-
WFs) for all the Ir d and Te p orbitals, which are gener-
ated from the first-principles calculations. The (100) surface
Green’s functions of the semi-infinite sample are obtained us-
ing an iterative method.

Our first-principles calculations show that the electronic
structure of 1T-structure IrTe2 is similar to that of PdTe2, ex-
cept that the type-II Dirac points lie at 0.18 eV above EF in
IrTe2 (Figs. 1(f) and 1(g)). This is because the number of va-
lence electrons of IrTe2 is one less than that of PdTe2. The
calculated three-dimensional (3D) constant energy surface at
the energy of the Dirac point in Fig. 1(e) shows that a small
electron pocket touches with a large hole pocket at one point,
which is an indication of a type-II Dirac point.

Like in other DSMs such as Na3Bi and Cd3As2, the Dirac
points in IrTe2 are associated with an inverted band structure.
The band inversion in IrTe2 occurs at A point around EF. With
the protection of threefold-rotation symmetry, the band cross-
ing along Γ –A is stabilized, forming the type-II Dirac points.
It is thus expected that there are topological surface states
(TSSs) in the inverted band gap. Our calculations confirm the
existence of TSSs around Z̃ point on (100) surface, as shown
in Figs. 1(h) and 1(i). When the Dirac points reside around EF,
the TSSs cross EF, forming a closed Fermi surface (FS) or a
pair of Fermi arcs connecting to the surface projection of the
Dirac points.
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Fig. 1. Crystal structure and calculated electronic structures of IrTe2. (a) Crystal structure. Orange and blue balls represent Ir and Te atoms,
respectively. Black dashed lines indicate the unit cells. (b) Bulk BZ and projected (100) surface BZ. Red dots on Γ –A line (labeled as D) mark the
momentum locations of the Dirac points (DPs). (c) and (d) Schematic illustrations of type-I and type-II Dirac cones, respectively. (e) Calculated
3D Fermi contours at the energy of the Dirac points. (f) and (g) Calculated bands along Γ –A and S–D–T , respectively, showing the band structures
of the type-II Dirac points. (h) and (i) Projection of calculated band dispersions along Z̃–Γ̃ and Z̃–T̃ , respectively, on (100) surface.
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At room temperature, IrTe2 is isostructural to the 1T-
structure PdTe2 (Fig. 1(a)) and a structural phase transition
occurs at ∼ 250 K.[33] By substituting Pt or Pd with Ir, the
structural transition is rapidly suppressed, which is accom-
panied with the appearance of bulk superconductivity.[33] In
the phase diagram of (Ir1−xPtx)Te2, Tc reaches a maximum
of ∼ 3 K at x = 0.05 and gradually decreases as the Pt con-
tent is further increased.[33] We have synthesized a series of
(Ir1−xPtx)Te2 single crystals with the nominal x up to 0.5.
Our resistivity measurements show bulk superconductivity for

x = 0.05 and 0.1 (Fig. 2(a)). The EDX measurements confirm

that the chemical compositions are consistent with the nom-

inal ones (Fig. 2(b)). The variation of Ir and Pt contents is

further confirmed by core level photoemission measurements

in Fig. 2(d). The x-ray diffraction data recorded on the (001)

plane in Fig. 2(c) show a reduction of the c lattice as the Pt

content increases. These results clearly indicate variation of

the chemical compositions in the series of (Ir1−xPtx)Te2 sam-

ples that we have synthesized.
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Fig. 2. Superconductivity and chemical compositions of (Ir1−xPtx)Te2. (a) Resistivity as a function of temperature for the samples with x = 0.05, 0.1,
and 0.25. (b) Representative EDX spectrum of one sample with the nominal x = 0.1. The inset shows the percentages of Ir, Pt, and Te elements, which
are consistent with the nominal composition. (c) XRD data recorded on the (001) plane of single crystals with x = 0.05, 0.1, 0.25, and 0.5. Inset shows
that the (003) peak position gradually shifts to higher angles as the Pt content increases. (d) Shallow core level spectra of the samples with x = 0.05,
0.1, 0.25, and 0.5. The two insets show the evolution of intensities of the Ir 4f and Pt 4f peaks, respectively, with Pt substitution.

Since IrTe2 and PtTe2 have similar electronic structures,
in which the Dirac points reside above and below EF, respec-
tively, the Dirac points can be tuned to EF in between them. To
determine the composition that the Dirac points traverse EF,
we investigate the electronic structures of (Ir1−xPtx)Te2 with
different doping levels using ARPES.

In Fig. 3, we display the ARPES results of the x = 0.5
sample. The calculations indicate that the Dirac point is lo-
cated on the high-symmetry line Γ –A along the kz direc-
tion. The ARPES experiments were preformed on the (001)
cleavage surface. To search for the theoretically predicted
Dirac point, we have measured the band structures in the
kx − ky planes at different kz values by varying the photon
energy hν of incident lights, according to the formula kz =

√
2m(hν −φ +V0)/h̄, where φ and V0 are the work function

and inner potential, respectively. Figures 3(a) and 3(b) show
the ARPES intensity plots and corresponding curvature inten-
sity plots, respectively, along Γ –K direction taken with dif-
ferent photon energies. There is a Dirac-like band crossing at
−0.62 eV in all the cuts in Figs. 3(a) and 3(b). The disper-
sions of the crossing bands do not change as hν varies, indi-
cating their surface origin. Notably, there is another Dirac-like
band crossing at −0.27 eV in the cut measured at hν = 22 eV
(Figs. 3(a3) and 3(b3)). The crossing bands become separated
in the other cuts measured with different hν values, indicating
that the observed band crossing at −0.27 eV is a 3D Dirac
point. The upper branch of the Dirac bands slightly shifts
downwards as hν increases from 22 eV to 24 eV, but rapidly
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moves upwards as hν decreases from 22 eV to 20 eV. It seems
that the ARPES intensity plot in Fig. 3(a1) at hν = 20 eV ex-
hibits an outline of an electron-like band below EF, whereas
the maximum intensity appears at EF. This suggests that the
electron-like band is actually located above EF while the in-
tensity below EF could arise from a kz broadening, which is
not negligible due to short mean free length of excited photo-
electrons. The lower branch of the Dirac bands evolves into
a M-shaped band as hν increases from 22 eV to 24 eV and a
hole-like band as hν decreases from 22 eV to 20 eV. As in-
dicated by the guide lines in Fig. 3(a), on the Γ –A line, the
bands monotonically shift downwards as hν increases from
20 eV to 24 eV, which is consistent with the band calculations
in Fig. 3(c). This means that the two crossing bands have the
same sign in the slope along the kz direction, confirming that

the Dirac point belongs to the type-II class. In addition to the
Dirac band, we observed some other bands that cross EF at
ky ∼ ±0.4 Å−1 in Figs. 3(a) and 3(b). These bands do not
change as hν varies, and are not consistent with the calculated
bulk bands, indicating their surface origin. Figure 3(d) shows
the stacking ARPES intensity maps at several constant ener-
gies measured at hν = 22 eV. There is a circular FS around the
Brillouin zone (BZ) center at EF. The FS shrinks into a point
at −0.27 eV and then grows into a circle again as the energy
is further reduced. These results exhibit that the Dirac cone
is nearly isotropic in the kx–ky plane. The Dirac point of the
x = 0.5 sample lies at 0.27 eV below EF, which is closer to EF

as compared with that in PtTe2, where the Dirac point lies at
∼ 1 eV below EF.[20]
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Fig. 3. Electronic structure of the (Ir1−xPtx)Te2 sample with x = 0.5. (a) ARPES intensity plots along the Γ –K direction measured at (a1)
hν = 20 eV, (a2) 21 eV, (a3) 22 eV, (a4) 23 eV, and (a5) 24 eV. (b) Corresponding curvature intensity plots. (c) Calculated band structure along
Γ –A of IrTe2. We determine the chemical potential of Ir0.5Pt0.5Te2 at 0.46 eV, as marked by the horizontal dashed line. The vertical dashed
lines indicate the kz locations of the measured cuts in panels (a) and (b). The inner potential V0 is set to be 13 eV and the lattice constant c is
determined to be 5.27 Å from the XRD data in Fig. 2(c). (d) Stacking plot of the ARPES intensity maps at several constant energies measured
at hν = 22 eV, showing the nearly isotropic Dirac cone structure in the kx–ky plane.

Next we focus on the evolution of band structures with
the Pt substitution. For all the samples with different Pt con-
tents, the measured band structures are almost consistent ex-
cept for the energy positions relative to EF. Figures 4(a)–4(d)
show the band dispersions along Γ –K direction measured at
hν = 22 eV for the (Ir1−xPtx)Te2 samples with x = 0.05, 0.1,
0.25, and 0.5, respectively. The results clearly show that the
Dirac point monotonically shifts upwards with the decrease of
Pt content. In Fig. 4(g), we extract the Dirac bands from the
ARPES data. Figure 4(h) plots the energy position of the Dirac
point as a function of Pt content, from which we determine that
the Dirac point passes through EF at x ∼ 0.1. Figure 4(e) ex-
hibits that two linearly dispersive bands for the x = 0.1 sample
cross each other at EF, leading to a point-like FS at the BZ
center in Fig. 4(f). Figure 4(h) shows that the Dirac point does

not shift linearly with the doping level. The energy shift be-
comes faster at higher Pt contents. The extrapolation based on
the trend is consistent with the previous result in PtTe2.[20] We
note that if the calculated bands of IrTe2 are rigidly shifted,
the Dirac point would pass through EF around x = 0.25. This
value is higher than that determined from our experimental
results. This might be because the band calculations slightly
overestimate the energy of the Dirac point in IrTe2. The pre-
vious study in PtTe2 shows similar inconsistency between cal-
culation and experiment,[20] with a discrepancy of ∼ 0.1 eV.

The substitution of Pt in IrTe2 not only raises the chemi-
cal potential, making the type-II Dirac points approach EF, but
also introduces bulk superconductivity into the system. The
maximum Tc is up to ∼ 3 K, which is accessible in many ex-
perimental techniques, making it possible to study the physical
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properties of Dirac fermions in the superconducting state. The
theoretical studies have proposed that topological supercon-
ductivity could be realized in type-I DSMs.[14,15] In contrast,
there is no theoretical study on the superconducting properties
of type-II DSMs. Moreover, as the Dirac points are close to EF

in the superconducting (Ir1−xPrx)Te2, the associated topologi-
cal surface bands may cross EF, forming a pair of Fermi arcs or
a closed FS. The proximity effect induces superconductivity in

the TSSs below Tc, which could realize two-dimensional topo-

logical superconductivity on the surface of DSMs, in analogy

to that in superconducting topological insulators. Our results

suggest that the Pt-substituted IrTe2 would be a promising ma-

terial for studying the topological superconductivity of bulk

and surface states in DSMs, and may find potential applica-

tion in novel quantum devices such as quantum computers.
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